AAU Energy
Education within Center for Research on Microgrids
Registration to CROM courses
Maximum number of participants per course:
Microgrid courses: 20
FPGA course: 12
Link to registration: https://phd.moodle.aau.dk
PhD and industrial courses
A Microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. This way, the energy can be generated and stored near the consumption points, increasing the reliability and reducing the losses produced by the large power lines. In addition, as one of current trends and developments the Internet of Things (IoT) is affecting and will shape the society and the world in all respects. The meet of IoT and energy industry naturally brings the promise of Energy Internet round the corner to introduce significant advantages and opportunities: enhanced automation, controllability, interoperability and energy efficiency, smarter energy management, and so on. The course starts giving some examples of Microgrids in the world. The course participants not only will learn modeling, simulation and control of three-phase voltage source inverters operating in grid-connected mode and islanded mode, but also, how these power electronics converters are integrated in AC Microgrids and how to be extended Energy Internet at a systemic level.
Relevant concepts like frequency and voltage droop control as well as the virtual impedance concept are explained in detail. Finally, this course also introduces the study of the hierarchical control of Microgrids for AC electrical distribution systems, stability analysis based on small signal models, as well as Energy Internet-enabled opportunities and advanced solutions.
Course schedule - will be announced soon!
Read more about the course here: www.energy.aau.dk/events/show/ac-microgrids.cid529696
DC distribution and transmission systems are a clear trend in electrical networks. The focus of this course is on modeling, control and operation of DC Microgrids, starting with stability and control strategies analyzed in detail, DC droop, virtual impedance concepts and hierarchical control structures for DC microgrids are also introduced. Control of DC-DC and AC-DC converters oriented as DC Microgrid interfaces are evaluated.
Distributed energy storage systems and mature DC output generation systems including distributed energy storage solutions are presented showing their interaction in DC distribution Microgrids. The course also shows examples of DC microgrids in different applications like telecommunication systems, wind power DC collector grid, residential DC electrical distribution systems and hybrid AC-DC microgrids.
Course schedule - will be announced soon!
Read more about the course here: www.energy.aau.dk/events/show/dc-microgrids.cid529697
Microgrids as one of the main building blocks of the smart grids which facilitate implementation of many smart grid functions and services. It is expected that in a near future, smart grids shall emerge as well-planned plug-and-play integration of microgrids which interact through dedicated highways for exchanging commands, data, and power. Providing a high power quality for the customers is one of the main objectives in smart grids.
On the other hand, the proliferation of different nonlinear and single-phase loads in electrical systems has resulted in voltage harmonic and unbalance as two common power quality problems. In addition, harmonic resonances can be excited giving rise to significant increase of the voltage distortion. These phenomena can cause variety of problems such as protective relays malfunction, overheating of motors and transformers and failure of power factor correction capacitors.
Course schedule - will be announced soon!
Read more about the course here: www.energy.aau.dk/events/show/power-quality-and-synchronization-techniques-in-microgrids.cid529698
Energy is a resource that needs to be managed and decisions need to be made on production, storage, distribution, and consumption of energy. Determining how much to produce, where and when, and assigning resources to needs in the most efficient way is a problem that has been addressed in several fields. There are available tools that can be used to formulate and solve these kinds of problems. Using them in planning, operation, and control of energy systems requires starting with the basics of math programming techniques, addressing some standard optimization problems, and adapting the solutions to new particular situations of interest.
A first issue is revisiting the modelling concept. The model is a simplified and limited representation of our reality. Complex multi-level problems may need different models and models valid at the operational level (operation and control) may not be useful at the tactical or strategic levels (scheduling and planning). Thus, when addressing optimization problems, detailed physical models based on differential equations will be replaced by algebraic equations expressing the basic relations between lumped parameters. The second issue is the choice of a problem-solving method. It is well known that all optimization methods have at least some limitations and there is no single method or algorithm that works best on all or even a broad class of problems. In order to choose the best method for a given problem, one must first understand the nature of the problem and the type of design space that is being searched. Finally, the third problem is how to translate the results of the optimization process into concrete actions that will manage the resources. This means that the digital outcome or solution must be interface with physical systems which general involves a communication infrastructure.
Students attending this course will learn how to recognise and formulate different optimization problems in planning, operation and control of energy systems, and how to solve them using existing software and solvers such as MATLAB and GAMS. Different principal algorithms for linear, network, discrete, nonlinear and dynamic optimization are introduced and related methodologies together with underlying mathematical structures are described accordingly. Several illustrative examples and optimization problems, ranging from the classical optimization problems to the recent MINLP models proposed for the optimization of integrated energy systems (such as residential AC/DC microgrids) will be introduced during supervised hand-on sessions and different tools (such as classic mathematical methods, heuristics and meta-heuristics) will be used for solving the cases. The choice of objective functions, representation of discrete decisions, using formulation tricks and checking the results will be also covered. Moreover, specific real applications of these methods and algorithms will be shown, not only focusing on the optimization by itself but also showing the techniques for interconnecting the computational system with the resources utilizing technologies such as the Internet of Things (IoT) and advanced metering infrastructures (AMI).
The course is intended for those students that, having a general knowledge in mathematics and simulation, have a very limited experience in math optimization and programming, and need to be introduced to these tools for energy systems optimization.
Course schedule - will be announced soon!
Read more about the course here: www.energy.aau.dk/events/show/energy-management-systems-for-microgrids-.cid529778
Nowadays, an important kind of islanded microgrids can be found in maritime power systems. For example, under normal operating conditions, the ship power system can be considered as a typical isolated microgrid and its characteristics, including variable frequency, are matched to terrestrial islanded microgrids.
This course provides an overview of the present and future architectures of such microgrids, associated control technologies, optimization methods, power quality issues and state of the art solutions. The significant role of power electronics in realizing maritime microgrids, challenges in meeting high power requirements and regulations in the maritime industry, state-of-the-art power electronic technologies and future trend towards the use of medium voltage power converters in maritime microgrids are also presented in this course.
Course schedule - will be announced soon!
Read more about the course here: www.energy.aau.dk/events/show/maritime-microgrids.cid529699
Digital controllers are now extremely powerful. With the current Field Programmable Gate Array (FPGA), designing a controller is no longer limited to the programming of a microprocessor but includes also the programming of the architecture of the processor itself along with its peripherals and its computing accelerators. As a consequence, the control designer should be now a system architect who also needs a deep understanding of the final system to be controlled. Along this line, this course aims to propose a rational use of current FPGA-based reconfigurable platforms for controlling power electronic and drive applications.
Course schedule - will be announced soon!
Read more about the course here: www.energy.aau.dk/events/show/advanced-fpga-based-controllers-for-power-electronic-and-drive-applications.cid529690